Unsupervised Analysis of Polyphonic Music by Sparse Coding

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse representations of polyphonic music

We consider two approaches for sparse decomposition of polyphonic music: a timedomain approach based on shift-invariant waveforms, and a frequency-domain approach based on phase-invariant power spectra. When trained on an example of a MIDI-controlled acoustic piano recording, both methods produce dictionary vectors or sets of vectors which represent underlying notes, and produce component activ...

متن کامل

Bilevel Sparse Models for Polyphonic Music Transcription

In this work, we propose a trainable sparse model for automatic polyphonic music transcription, which incorporates several successful approaches into a unified optimization framework. Our model combines unsupervised synthesis models similar to latent component analysis and nonnegative factorization with metric learning techniques that allow supervised discriminative learning. We develop efficie...

متن کامل

Polyphonic transcription by non-negative sparse coding of power spectra

We present a system for adaptive spectral basis decomposition that learns to identify independent spectral features given a sequence of short-term Fourier spectra. When applied to recordings of polyphonic piano music, the individual notes are identified as salient features, and hence each short-term spectrum is decomposed into a sum of note spectra; the resulting encoding can be used as a basis...

متن کامل

Unsupervised Feature Learning by Deep Sparse Coding

In this paper, we propose a new unsupervised feature learning framework, namely Deep Sparse Coding (DeepSC), that extends sparse coding to a multi-layer architecture for visual object recognition tasks. The main innovation of the framework is that it connects the sparse-encoders from different layers by a sparse-to-dense module. The sparse-to-dense module is a composition of a local spatial poo...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Networks

سال: 2006

ISSN: 1045-9227

DOI: 10.1109/tnn.2005.861031